Automatic sleep stage classification based on easy to register signals as a validation tool for ergonomic steering in smart bedding systems.

نویسندگان

  • Tim Willemen
  • Dorien Van Deun
  • Vincent Verhaert
  • Sandra Pirrera
  • Vasileios Exadaktylos
  • Johan Verbraecken
  • Bart Haex
  • Jos Vander Sloten
چکیده

Ergonomic sleep studies benefit from long-term monitoring in the home environment to cope with daily variations and habituation effects. Polysomnography allows to asses sleep accurately, but is costly, time-consuming and possibly disturbing for the sleeper. Actigraphy is cheap and user friendly, but for many studies lacks accuracy and detailed information. This proof-of-concept study investigates Least-Squares Support Vector Machines as a tool for automatic sleep stage classification (Wake-N1-Rem to N2-N3 separation), using automatic trainingset-specific filtered features as derived from three easy to register signals, namely heart rate, breathing rate and movement. The algorithms are trained and validated using 20 nights out of a 600 night database from over 100 different healthy persons. Different training and test set strategies were analyzed leading to different results. The more person-specific the training nights to the test nights, the better the classification accuracy as validated against the hypnograms scored by experts from the full polysomnograms. In the limit of complete person-specific training, the accuracy of the algorithm on the test set reached 94%. This means that this algorithm could serve its use in long-term monitoring sleep studies in the home environment, especially when prior person-specific polysomnographic training is performed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers

Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...

متن کامل

A novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems

Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...

متن کامل

Automatic classification of normal and abnormal cardiac sounds by combining features based on wavelet transform and capstral coefficients extracted from PCG signals (Research Article)

Cardiac sounds are produced by the mechanical activities of the heart and provide useful information about the function of the heart valves. Due to the transient and unstable nature of the heart's sound and the limitation of the human hearing system, it is difficult to categorize heart sound signals based on what is heard from a stethoscope. Therefore, providing an automated algorithm for prima...

متن کامل

K-Complex Detection Based on Synchrosqueezing Transform

K-complex is an underlying pattern in the sleep EEG. Due to the role of sleep studies inneurophysiologic and cognitive disorders diagnosis, reliable methods for analysis and detection of this patternare of great importance. In our previous work, Synchrosqueezing Transform (SST) was proposed for analysisof this pattern. SST is an EMD-like tool, which benefits from wavelet transform and reallocat...

متن کامل

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Work

دوره 41 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2012